观察行业视觉

学习行业知识,发布行业动态,播报公司发展,展示企业活力

首页 > 新闻动态 > 行业新闻
特斯拉自动驾驶的底层逻辑
2021-08-28 09:11:59

 

本文系基于公开资料撰写,仅作为信息交流之用,不构成任何投资建议。

如果机器人有大脑,会是什么样?

在科幻电影《机械姬》里,全球最大搜索引擎公司“蓝皮书”CEO纳森向观众展示了自己发明的机器人大脑,并留下这么一句话:

该影片上映于2015年,被誉为人工智能爱好者必看的电影之一,拿下包括奥斯卡金像奖在内等多项国际电影大奖。但在众多奖项中,单项之冠是“最佳女配角”,艾丽西卡・维坎德,也正是影片中智能机器人“艾娃”的扮演者。

“艾娃”是纳森给“她”取的名字,为制造出能独立思考的人工智能,纳森利用自家搜索引擎“蓝皮书”的算法来构建艾娃大脑的“思维”,使之学会人类思考方式。

无独有偶,想让机器有人类思维,同样见之于特斯拉打造的自动驾驶AI上。2019特斯拉自动驾驶日上,安德鲁・卡帕西(Andrej Karpathy,特斯拉AI总负责人)曾明确地向大众传达

由此,特斯拉开发出“人工神经网络”,并利用大量有效的行车数据来训练它,在这一过程中不断完善并迭代视觉算法,终于在今年年中拿掉毫米波雷达,而随着超算Dojo浮出水面,长期被诟病只能算辅助驾驶的特斯拉,离真正的自动驾驶又近一步。

纯视觉自动驾驶方案是特斯拉的独门绝技,但需建立对计算机视觉深度训练之上。

计算机视觉是一种研究机器如何“看”的科学,当人类看到一张图片时,能清晰辨析图片里的事物,比如说美丽的风景照、或者一张小狗的照片,然而计算机看到的却是像素(pixel),像素是指由图像的小方格组成的,这些小方块都有一个明确的位置和相对应的色彩数值,计算机“记住”的就是这堆数字字符,而不是具体事物。

如果想让计算机能像人类一样快速准确识别出图片里的事物,机器也有了人工大脑,来模拟人脑处理加工图像信息过程,分为输入层、隐藏层、输出层,里面有许多人工神经元,可视作人脑初级视觉皮层中的锥体细胞和中间神经元。

整个训练过程亦可类比小孩看图识物,通过一次次输入、对比、纠正,完成机器图像认知。通常在训练初期,人工神经网络识别结果的准确度非常低,输出结果和实际值相似度可能只有10%;为了提高准确度,需要再将两者误差从输出层反向传播至输入层,并在反向传播中,修正神经网络隐藏层的参数值,经过上百万次的训练,误差逐渐将收敛,直至输入和输出端匹配度达到99%。 

上述过程是理解特斯拉自动驾驶AI的关键,只不过特斯拉开发的人工神经网络专注于驾驶领域,做一名专职云端司机。对它来说,最好的学习材料就是行车数据,大量、多样化、来自真实世界的驾驶训练数据集(training dataset)是自动驾驶AI能应对各种路况、交通问题的百宝书。

在影子模式的支持下,特斯拉全球百万车队每时每刻的行车数据都成为这位云端“老司机”提升自身驾驶能力的养分。时至今日,特斯拉Autopilot已经能瞬间完成道路上各种动静目标、道路标识、交通符号的语义识别,反应速度甚至比人脑条件反射更快。

在2020年Matroid机器学习大会上,卡帕西以交通指标STOP为例,讲解Autopilot应对这些长尾情况的具体方法。

在日常驾驶过程中,车辆总会经过形形色色的STOP指标,最为正常的情况就是一个立在路旁或者路中、红底白字的STOP标识,但现实生活总会有些预料之外的情况发生,驾驶员偶尔会碰上一些奇奇怪怪、需要结合具体背景来理解意涵的指标,包括不限于以下:

上一篇 :工信部:将适时开展钠离子电池标准制定,推动钠离子电池全面商业化
云数据库选型必读:该选什么样的云数据库?:下一篇